Belajar Penjumlahan dan Perkalian Akar-Akar Persamaan Kuadrat ~ Matematika Akuntansi -->

Wednesday, October 21, 2015

Belajar Penjumlahan dan Perkalian Akar-Akar Persamaan Kuadrat

Nah guys sekarang saya bakalan posting tentang materi Penjumlahan dan Perkalian akar-akar Persamaan Kuadrat.
Meyambung materi tentang metode penyelesaian metode persamaan kuadrat kita lanjut ke penjumlah dan perkalian akar-akar persamaannya.
Simak baik-baik ya!!!

Dalam mencari jumlah dari akar-akar persamaan kuadrat kita harus tau rumusnya terlebih dahulu.
Untuk mencari rumus tersebut yu kita cari bareng-bareng!!!!
Dalam metode mencari akar persamaa kuadrat ada metode yang menggunakan rumus :
x1,2 = { -b ± (b2 - 4ac) } / 2a
dari rumus tersebut sebenarnya terdapat nilai diskriminan yaitu 
D = b2 - 4acNilai diskriminan itu ialah nilai pembeda dari rumus diatas. Maksud dari nilai pembeda itu dimana sebelum nilia diskriminan ini terdapat + pada rumus diatas.
maka untuk mencari jumlah akar dari persamaan tersebut kita tinggal menjumlah kan rumus di atas dengan nilai diskriminan kita hanya lambangan kan denga D, maka :

 x1 + x2     = {(-b D) / 2a} + {(-b D) / 2a}
                    = (-D - D) / 2a
                    = -2b / 2a
                    = -b /aMaka dari cara tersebut kita mendapatkan rumus jumlah akar-akar persamaan kuadrat, yaitu :
x1 + x2 = -b/aKemudian untuk mencari rumus perkalian akar-akar persamaan kuadrat kita tinggal mengkalikan rumus persamaan kuadrat dengan nilai diskriminan hanya kita tulis dengan lambang D, maka:
 x1 . x2 = {(-b D) / 2a} {(-b D) / 2a}
                  = (b2 - D) / 4a2
                  = b2 - (b2 - 4ac) / 4a2
                  = (b2 - b2 + 4ac) / 4a2
                  = 4ac / 4a2
                  = c/a
Maka dari cara tersebut kita mendapatkan rumus hasil kali dari akar-akar persamaan kuadrat, yaitu :x1 . x2 = c/a

Nah supaya kita tambah ngerti, kita masuk ke contoh soal yu :)
Contoh
dari persamaan x2+4x-12 = 0  ,tentukan :
x1 + x2x1 . x2x12 + x22

Jawab :
Untuk menjawab soal seperti ini yang pertama harus kita lakukan ialah mencari a,b,dan c dari persamaan diatas :
a = 1, b = 4, dan c = -12
Maka selanjutnya kita mencari berapa jumlah dari akar-akar persamaan di atas :
x1 + x2 = -b/a
           = -4/1           = -4
Kemudian kita cari hasil kali dari akar-akar persaman di atas :x1 . x2 = c/a
          = -12/1
          = -12
Dan terakhir kita cari berapa kuadrat dari akar-akar persamaan di atas :x12 + x22 , dalam penyederhanaan persamaan maka bentuk penyederhanaan persaamaan ini apabila di faktorkan akan menjadi :x12 + x2 (x1 + x2)2 - 2(x1 . x2dikarenakan jumlah dan hasil kali akarnya sudah kita ketahui maka, kita tinggal masukan jumlah dan hasil kali akar pada persaman x12 + x2 (x1 + x2)2 - 2(x1 . x2) :x12 + x2 (x1 + x2)2 - 2(x1 . x2), dikarenakan     x1 + x= -4 dan x1 . x= -12 maka :
                (-4)2 - 2(-12)
                      
 16 + 24 

                40
Maka masalah sudah kita pecahkan ya itu :x1 + x2       =   -4
x1 . x2         = -12
x12 + x2  40

Nah segini dulu yah materinya
jgn lupa juga baca link ini yah buat lanjutin dan bikin ilmu km sempurna tentang persamaan kuadrat :

Belajar Cara Menyusun Persamaan Kuadrat Baru

maaf klo ada kesalahan
jangan sungkan untuk koreksi atau bertanya tinggal komen ajh ya!!!

Asalamualaikum bye bye.....

Jika ingin bertanya secara privat, Silahkan hubungi no 085709994443 dan untuk berkomentar silahkan klick link di bawah ini 👇