Standard Deviation formula for Single Data |
Standard Deviation formula for Single Data
S = √((1/n) ∑(xi - X̄)2)
Information :
S = Standard deviationxi = ith-data (x1. x2, x3, ... , xn)
X̄ = Mean of data
n = Amount frequency of data
Example :
Please determine the standard deviation of 4, 6, 7, 8, 10, 10, 11 !
Answer :
n = 7
X̄ = (4 +6 + 7 + 8 + 10 + 10 + 11)/7
X̄ = 56/7
X̄ = 8
∑(xi - X̄)2 = (x1 - X̄)2 + (x2 - X̄)2 + (x3 - X̄)2 + (x4 - X̄)2 + (x5 - X̄)2 + (x6 - X̄)2 + (x7 - X̄)2
∑(xi - X̄)2 = (4 - 8)2 + (6 - 8)2 + (7 - 8)2 + (8 - 8)2 + (10 - 8)2 + (10 - 8)2 + (11 - 8)2
∑(xi - X̄)2 = (-4)2 + (-2)2 + (-1)2 + (0)2 + (2)2 + (2)2 + (3)2
∑(xi - X̄)2 = 16 + 4 + 1 + 0 + 4 + 4 + 9
∑(xi - X̄)2 = 38
S = √((1/n) ∑(xi - X̄)2)S = √((1/7) 38)
S = √(38/7)
S = √(38/7)
S = √5.43
S = 2.33
So the standard deviation of 4, 6, 7, 8, 10, 10, 11 is 2.33
Just this article which I can share to you.
I apologize if there are wrong word on this article
The end of word wassalamualaikum wr. wb
Reference :
- Book math group sales and accounting essay To'ali class 12
Jika ingin bertanya secara privat, Silahkan hubungi no 085709994443 dan untuk berkomentar silahkan klick link di bawah ini 👇